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Abstract. Long-Range Alpha (LRA) emission probability is studied using a one dimensional sudden ap-
proximation model. The probability of the energy transfer between the scissioning nucleus and the LRA
particle as well as the LRA angular distribution are discussed for several elongations and for several mass
splits at scission. Finally, it is shown that a comparison between the calculated LRA emission probability
and the corresponding experimental data allows a determination of the Qα-value at the scission point.

PACS. 21.60.Gx Cluster model – 23.60.+e α-decay – 24.75.+i General properties of fission – 25.85.Ca
spontaneous fission

1 Introduction

Recent measurements of the characteristics of Long-Range
Alpha (LRA) particles emitted during spontaneous fis-
sion of 238,240,242,244Pu isotopes have enlightened the LRA
emission process [1]. In particular, it has been shown that
the LRA emission process occurs only if three conditions
are fulfilled:

1) An α-cluster is formed inside the fissioning nucleus [2].
The α-preformation probability is calculated from the
spectroscopic factor (Sα) determined in α-decay. It
means that Sα is supposed to be rather constant during
the fission process. This asumption is also supported
by the calculations performed by Carjan et al. [3].

2) The available energy is larger than a minimum quan-
tity that is related to the Energy Cost (Ec) (intro-
duced by Halpern [4]) which corresponds to the energy
needed to put an α-particle between the two fragments.
Supposing that Ec is taken from the deformation en-
ergy of the scissioning nucleus, the probability (Pdef)
that this deformation energy is larger than Ec can be
obtained from the distribution of the Total eXcitation
Energy (TXE) in binary fission: Pdef =Proba(TXE >
Ec). Indeed, in the case of spontaneous fission, TXE
is a good approximation of the deformation energy at
scission, the internal heating being low [5].

3) At least this minimum energy Ec is effectively trans-
fered to the α-particle. In this case, the α-particle can
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overcome the Coulomb barrier and escape from the nu-
cleus. The calculation of the probability of this energy
TRansfer between the scissioning nucleus and the LRA
particle (PTR) requires a mechanism by which this en-
ergy transfer occurs.

Moreover, it has also been shown in ref. [1] that the
fission modes (the different paths taken by the fissioning
nucleus from saddle to scission) have a strong impact both
on the available energy (point 2) and on the energy that
is effectively transferred (point 3). The impact of the fis-
sion modes on the available energy is reflected in the big
difference between the corresponding TXE distributions.
For instance, in the case of 238Pu, the TXE distributions
of the Standard I and Standard II fission modes (following
Brosa’s terminology [6]) are well described by Gaussians
with an average value of 14.4 MeV (for St.I) and 24.2
MeV (for St.II) and with a full width at half maximum of
12.6 MeV (for St.I) and 23.5 MeV (for St.II). Moreover,
PTR was found to be much smaller in the (more compact)
Standard I mode than in the (more elongated) Standard
II mode. This means that PTR increases with the defor-
mation at scission.

Taking into account the three conditions mentioned
above and including the effect of the fission modes, the
LRA emission probability (given by the ratio of the LRA
yield to the Binary fission yield: LRA/B) can be expressed
by the following empirical formula:

LRA/B = Sα

∑
i

W iProbai(TXE > Ei
c)P

i
TR (1)
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where i indicates the fission mode and W i its correspond-
ing weight.

In eq. (1) the only quantity to be determined theoret-
ically is PTR. For this purpose, we need a model for the
mechanism by which the fissioning system transfers part
of its available energy to the LRA particle. Such a model
is realistic if it leads to the following predictions:

– the calculated PTR values are strongly enhanced with
the nuclear elongation at scission;

– the energy transfer is such that it explains the char-
acteristics of the LRA angular distribution; in other
words, this mechanism must lead to both equatorial
and polar emission of LRA particles.

The aim of the present work is to show that the “sud-
den approximation” constitutes such a model. This emis-
sion mechanism was proposed long time ago by Halpern
[4], but it has never been developed quantitatively. In this
work, the sudden approximation is treated in one dimen-
sion, namely the deformation axis z. In the first part, we
will present our model and the observables which can be
calculated with it. In the second part, we will present and
discuss our main results. Finally, we will show how an up-
per limit of the Qα-value at the scission point (QSC

α ) can
be deduced from a comparison between our theoretical ap-
proach and the experimental data given in ref. [1]. This
quantity is not accessible by any other means.

2 Description of the model

The idea of the sudden approximation is the following: an
α-particle is in a potential that changes so rapidly during
the neck rupture that the particle has no time to “follow”
this change. The potential change is due to the sudden
rupture of the neck between the nascent fission fragments
and its absorption by the fragments. Since in this case,
the α-motion is not at all adiabatic, the α-particle can
be described “Immediately After Scission” (IAS) by the
same wave function as “Just Before Scission” (JBS). The
sudden approximation is only justified if the typical neck
rupture time is very small compared to the typical period
of motion for an α-particle inside the scissionning nucleus.

2.1 Parametrisation of the shape and calculation of
the potential

The quantitative results were obtained under the assump-
tion that the IAS shape is described by two spherical frag-
ments with the same distance between the center of mass
(Dcm) and the same mass asymmetry (R = MH/ML) as
the JBS shape. To describe the nuclear shape at JBS time,
we have used the parametrisation of Brack et al. [7]:

ρ2JBS(z) =
(
d2 − z2

) (
A+ α

(z

d

)
+B

(
z2

d2

))
, (2)

where ρJBS and z are the cylindrical coordinates of the
nucleus and A, B, α and d are four parameters. Due to
the volume conservation constraint, only three of them are
free. These free parameters control three characteristics of
the JBS shape:

– the distance between the two centers of mass of the
nascent fragments: Dcm;

– the mass asymmetry of the fragments: R = MH/ML;
– the diameter of the neck: dneck.

For the IAS nuclear shape, the formula (2) is no longer
used since we suppose two spherical fragments (keeping
the same Dcm and R as the JBS nuclear shape). Examples
of JBS and IAS shapes are shown in fig. 1 for two sets of
parameters: R = 1, Dcm=18.2 fm and dneck=2.4 fm (left
side) and R = 1.4, Dcm=20.5 fm and dneck=2.4 fm (right
side).

The potential along the z-axis (potential in one di-
mension) is calculated by summing the nuclear (Vnuc) and
coulomb (Vcoul) part seen by an α-particle. The nuclear
interaction is given by a deformed Woods-Saxon type of
potential. The depth (V0 = −96.4 MeV), the diffuseness
(a = 0.625 fm) and the range (r0A1/3 with r0 = 1.376 fm)
of this potential are chosen in order to reproduce α-
scattering data [8]. The coulomb part is obtained sup-
posing a uniform charge density inside the surface defined
by eq. (2). All the details of the calculation can be found
in ref. [9], where the authors have considered the same
potential in their quantum-mechanical treatment of LRA
emission.

2.2 Determination of ψout
LRA

In analogy with alpha-decay, the LRA wave function at
the JBS time was supposed to be an eigenstate of the JBS
potential:

| ψLRA〉 =| ϕJBS
n 〉, (3)

having an eigenenergy equal to the Qα-value at scission:
EJBS

n = QSC
α .

Due to the total loss of adiabaticity during the neck
rupture, ψLRA is described at the IAS time by the same
wave function (which is now a wave packet in the new
IAS potential). In this way, ψLRA receives “suddenly” an
amount of energy. This energy transfer mechanism allows
the α-particle to have components with energy higher than
the top of the potential barrier. Therefore, the part of the
wave function with such components (ψout

LRA) corresponds
to an α-particle able to escape from the nucleus. This can
be seen using the following decomposition:

|ψLRA〉 = |ϕJBS
n 〉 =

∑
m

〈ϕIAS
m |ψLRA〉|ϕIAS

m 〉

+
∫

E

〈ϕIAS
E |ψLRA〉|ϕIAS

E 〉dE

= |ψin
LRA〉+ |ψout

LRA〉
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Fig. 1. Examples of “Just Before Scission” (top) and “Immediately After Scission” (bottom) nuclear shapes obtained for
A = 240 with two different sets of parameters: Dcm=18.2 fm, R = 1, dneck=2.4 fm (left) and Dcm=20.5 fm, R = 1.4, dneck=2.4
fm (right).

where {| ϕIAS
m 〉} and {| ϕIAS

E 〉} are the eigenstates of the
IAS potential, respectively, below and above the top of the
barrier. The term |ψin

LRA〉 =
∑

m〈ϕIAS
m |ψLRA〉|ϕIAS

m 〉 cor-
responds to the LRA-wave function having components
lower than the top of the IAS potential barrier, while the
term |ψout

LRA〉 =
∫

E
〈ϕIAS

E |ψLRA〉|ϕIAS
E 〉dE represents the

LRA-wave function with components higher than the top
of the IAS potential barrier. Consequently, ψin

LRA describes
the α-particles staying inside the nascent fragments while
ψout
LRA describes the α-particles escaping from the nucleus.

Since the diagonalisation of the potential cannot give us
the eigenstates of the continuum, ψout

LRA cannot be ob-
tained directly but from the difference between ψLRA and
ψin
LRA :

|ψout
LRA〉 = |ϕJBS

n 〉 −
∑
m

〈ϕIAS
m |ϕJBS

n 〉|ϕIAS
m 〉. (4)

2.3 Deduced observables

The knowledge of ψout
LRA allows the determination of two

physical quantities:

– the probability PTR to transfer enough energy to emit
an α-particle which is simply given by

PTR =

+∞∫
−∞

| ψout
LRA(z) |2 dz (5)

– the LRA angular distribution. Indeed, since |ψout
LRA(z)|2

represents the probability of the released α-particles
to be present outside the nucleus (e.g. at the ridge
of the α-nucleus potential), | ψout

LRA(z) |2 is related to
the LRA angular distribution. Nevertheless, we need
to know the correspondance between the initial posi-
tion (ρridge, z) of an LRA-particle and its final angle
θαL with respect to the light fragment. This corre-
spondance is given by the deflection function θαL(z),
which can be obtained from classical trajectory cal-
culations of an α-particle moving in the field of the
two main fragments. Such classical calculations have
been already performed by Carjan and Leroux [10]
where the finite size of the fragments was taken into
account. Then, knowing θαL(z) (from [10] and [11])
and |ψout

LRA(z)|2 (from the present work), the theoreti-
cal LRA angular distribution can be deduced from the
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Fig. 2. Typical example of the procedure used to determine ψout
LRA. The plots on the top of the figure represent the potential (left)

and the wave function (right) at the “Just Before Scission” time. The situation after the sudden neck rupture (corresponding to
the “Immediatly after scission” time) is illustrated on the bottom of the figure, where the potential (left) and ψout

LRA deduced from
eq. (4) (right) are plotted. The parameters used in this example are: Dcm = 18.2 fm, R = 1 (symmetric case), dneck = 2.4 fm
and QSC

α = 6.75 MeV.

following equation [11]:

Nth(θαL) =

∑
Z

|ψout
LRA(z)|2ρridge(z)

√
1 +

(
dρridge
dz

)2 ∣∣∣∣dθαL

dz

∣∣∣∣
−1

, (6)

where ρridge(z) defines the line on which the LRA are
located when the classical trajectory calculations start:
this line corresponds to the ridge of the potential bar-
rier and is situated at about 2 fm from the nuclear
surface. The sum is done over all the z-positions lead-
ing to the same final angle θαL. Moreover, in order to
simulate a finite experimental angular resolution, we
have to make a convolution of Nth(θαL) with an angu-
lar resolution function r(θ) (which is supposed to be a
Gaussian function). In this way, eq. (6) becomes

Nexp(θαL) =
A

ω
√
2π

+∞∫
−∞

Nth(θ) exp

(
− (θαL − θ)2

2ω2

)
dθ,

(7)

where A is a normalisation constant and ω the experi-
mental angular resolution. We have taken here: ω = 2◦.

From eq. (7), the equatorial (between fragments) and
polar (beyond fragments) contributions of the LRA angu-
lar distribution can be separated.

2.4 Typical example

A typical example of numerical results obtained for 240Pu
using the procedure described above is shown in figs. 2
and 3.

Figure 2 illustrates the several steps used for the deter-
mination of ψout

LRA. In this example, the parameters used to
get the nuclear shapes are: Dcm = 18.2 fm, R = 1 (sym-
metric case) and dneck = 2.4 fm. The JBS and IAS po-
tentials can be seen in the left-top and left-bottom of the
figure, respectively. Knowing the JBS potential, we have
calculated the corresponding eigenstates. Then, we have
chosen one of these eigenstates as the initial wave function.
Here, the 37th eigenstate (ψLRA = ϕJBS

37 ) with EJBS
37 =

QSC
α = 6.75 MeV was considered and plotted on the right-

top of fig. 2. From the calculations of the eigenstates of the
IAS potential, eq. (4) can be applied in order to get ψout

LRA
which is plotted on the right-bottom of fig. 2. From eq. (5),
we have obtained: PTR=0.16. The eigenstates of both JBS
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Fig. 3. LRA angular distribution (top of the figure) obtained
from eq. (7) using the same parameters as in fig. 2. The IAS
shape is plotted on the bottom part while | ψout

LRA |2 (straight
line, left-hand-logarythmic scale) and θαL (dashed line, right-
hand scale) are drawn in the middle part. Note that the Polar
Light (PL), Polar Heavy (PH) and EQuatorial (EQ) contribu-
tions of the LRA angular distribution are also mentioned.

and IAS potentials were obtained by solving numerically
the corresponding stationary Schrödinger equation on the
following grid: z = −40 fm to z = +40 fm by ∆z = 0.15
fm.

Figure 3 is related to the LRA angular distribution
which was deduced from ψout

LRA. On the bottom of the
figure, the IAS shape is again drawn. |ψout

LRA|2 is plotted
in the middle part (straight line and left-hand logaryth-
mic scale). We can already observe that the main part
of |ψout

LRA|2 is located between the heavy fragments and
it is due to the strong potential change in the neck re-
gion between JBS time and IAS time. This main part will
contribute to the equatorial emission. The much smaller
variation of the potential at the extremities of the frag-
ments produces small contributions of |ψout

LRA|2 in this re-
gion. This part will correspond to the polar emission. The
deflection function θαL(z) taken from ref. [11], is also plot-

ted in the middle of fig. 3 (dashed line and right-hand
scale). Finally, the LRA angular distribution calculated
using eq. (7) can be seen on the top part of fig. 3. From
these distribution, the polar emission (θαL ∈ [0◦, 25◦]
and θαL ∈ [155◦, 180◦]) as well as the equatorial emis-
sion θαL ∈ [25◦, 155◦] can be deduced: we have obtained,
respectively, 1.6% and 96.8%.

3 Results and discussion

As we have seen, our model contains four free parameters:
three of them (Dcm, dneck and R) come from the JBS
shape while the fourth one (QSC

α ) comes from the choice
of the initial LRA wave function (i.e. from the JBS eigen-
state). The influence of these parameters on ψout

LRA will
now be studied and discussed. In fact, we already noticed
that ψout

LRA is strongly influenced by the difference between
the JBS and IAS potentials. In our one-dimensional cal-
culations, for a given Dcm and R value, the variation of
the dneck has a negligible effect on the JBS potential along
the z-axis (and of course, no effect on the IAS potential).
Therefore, the dneck parameter has a negligible influence
on the calculated ψout

LRA. This is the reason why we have
adopted a fixed dneck value of 2.4 fm for all calculations.

3.1 Angular distribution

To study the influence of the mass asymmetry (R) and
of the elongation (Dcm) on the LRA angular distribution,
three cases have been considered:

– Dcm = 18.2 fm and R = 1 (case a);
– Dcm = 20.5 fm and R = 1 (case b) and
– Dcm = 20.5 fm and R = 1.4 (case c).

For each case, the choice of the initial LRA wave func-
tion (eq. (3)) was done in such a way that they all have the
QSC

α value of 2 MeV. For each R and Dcm values, the cor-
responding deflection function was taken from [11]. These
three cases are illustrated in fig. 4, using the same presen-
tation as in fig. 3 (except for | ψout

LRA |2 which is plotted on
a linear scale).

It is interesting to observe that in all cases, Nexp(θαL)
(top of fig. 4), corresponding to an angular resolution of 2◦,
has two close peaks in the equatorial region. These peaks
correspond to the two extrema of the deflection function.
It has been shown [11] that this structure could be ex-
perimentally observed only with an experimental angular
resolution lower than 5◦ and with a narrow selection on
the fragment masses.

Comparing cases a and b (same mass asymmetry but
different elongation), we can observe that the elongation
of the scissioning nucleus has two main effects, namely
an increase of the polar contribution and of the width of
the equatorial contribution. This is in qualitative agree-
ment with the experimental data obtained by Heeg [12]
(for 252Cf(sf)) and Theobald et al. [13] (for 235U(n,f)). In-
deed, these authors have analysed the LRA angular distri-
bution for different mass splits. They have shown that for
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the symmetric case (1.0 < R < 1.2), which corresponds to
the so-called Super Long fission mode [6] (i.e to the more
elongated scissioning configuration), the width of the an-
gular distribution as well as the polar contribution are
enhanced compared to other R values.

Comparing cases b and c (same elongation but dif-
ferent mass split), we can observe that the main dif-
ference is the increase of the polar light contribution
(θαL ∈ [0◦, 25◦]) when the mass asymmetry is increasing.
For instance, in case b (R = 1), both polar contributions
represent 7.5% of the total angular distribution, while in
case c (R = 1.4), the heavy polar contribution slighlty
decreases (6.2%) and the light polar one reaches 12.3%.
This enhancement of the light polar emission with mass
asymmetry is also observed experimentally [12].

Hence, the sudden approximation allows us to under-
stand and to reproduce qualitatively the main charac-
teristics of the LRA angular distribution. Quantitatively

however, the polar contributions as well as the width of
the equatorial distribution are too high. This is a conse-
quence of our two spherical fragments approximation of
the IAS configuration. Indeed, with a more realistic frag-
ment shape, the change between the JBS and IAS poten-
tials at the extremities of the fragments as well as in the
neck region would be less pronounced and consequently
both the polar emission and the width of the equatorial
emission would be reduced.

3.2 Energy transfer probability PTR

Concerning the energy transfer probability, we can observe
the following properties:

– the influence of the mass asymmetry on PTR is negligi-
ble. Indeed, the R parameter will affect the repartition
of the polar and equatorial contributions but the inte-
gral value will stay quite constant.
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– PTR depends on the distance between the center-of-
mass of the fragments as well as on the Qα-scission
value: PTR ≡ PTR(Dcm, QSC

α ). This is shown in fig. 5
where PTR has been calculated for all the eigenfunc-
tions ϕJBS

n below the top of the barrier and for several
elongations. Fitting our calculation and extrapolating
for intermediate Dcm values (see appendix B for the
details of this fitting procedure) we have obtained a
contour plot of PTR (fig. 6).

For a given Qα-scission value, we can see that PTR

strongly increases with the elongation of the scissioning

nucleus which is in agreement with the experimental data
[1]. This property was also contained in the model of
Carjan [2] as well as in its quantum-mechanical versions
[9,14], but could not be reproduced in Rubchenya’s model
[15,16].

4 Determination of the Qα-value at scission

4.1 Some comments on equation (1)

As mentioned in the introduction, the behaviour of the
LRA emission probabilities for the Pu-isotopes [1] can be
very well described using eq. (1). This equation can be
derived in the following way.

For a fission event corresponding to a given available
energy TXE, the LRA emission probability can be written
as

(LRA/B)TXE = SαWTXEδ(TXE > Ec)PTR (8)

with
{

δ(TXE > Ec) = 1 if TXE > Ec,
δ(TXE > Ec) = 0 otherwise,

where WTXE represents the statistical weight of the given
TXE value. Equation (8) reflects the fact that when the
available energy is too small (TXE < Ec), LRA emission
is not possible, while in the opposite case (TXE > Ec),
the energy transfer between the scissioning nucleus and
the α-particle can occur with a finite probability PTR.

Considering all the fission events and keeping in mind
that TXE is essentially depending on the mass asymmetry
(R) and on the scission elongation (Dcm), eq. (8) can be
generalised:

LRA/B = Sα

∑
i=I,II

W i

×
∫∫

dRidDi
cmWTXEδ(TXE > Ei

c)P
i
TR(D

i
cm, QSC

α ), (9)

since P i
TR is not affected by the mass asymmetry (see last

paragraph). On the other hand, according to Brosa’s the-
ory, for a given fission mode i, the distribution of the scis-
sion elongations is strongly peaked on the average scission
elongation 〈Di

cm〉 and therefore P i
TR does not depend on

TXE. So, we can reasonably make the following approxi-
mation:

P i
TR

(
Di

cm, Ri, QSC
α

) � P i
TR

(〈Di
cm〉, QSC

α

)
. (10)

Using approximation (10), P i
TR can be put outside the

double integral in eq. (9). Moreover, since
∫∫
dRidDi

cm

WTXEδ(TXE > Ei
c) =Proba(TXE > Ei

c), we can see that
eq. (1) is simply resulting from eqs. (9) and (10).
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Fig. 7. Experimental (solid circle) and calculated (open cir-
cle) LRA/B-values for the four Pu-isotopes under investigation
(238,240,242,244Pu). The QSC

α values used for the calculations
are also mentioned. It can be seen that the best agreement is
reached when QSC

α is between 10 and 11 MeV.

Table 1. Survey of the quantities needed to apply eq. (11). Ex-
cept for Sα, all these data are extracted from the experimental
work of ref. [17].

Sα Standard I Standard II

(10−3) 〈DI
cm〉 W I Proba 〈DII

cm〉 W IIProba
(fm) (%) (fm) (%)

238Pu 8.63 16.4 2.44 17.9 75.12
240Pu 10.91 16.6 14.85 17.9 60.86
242Pu 11.01 16.7 20.97 18.0 52.75
244Pu 8.7 17.0 30.62 18.2 46.70

Table 2. Energy transfer probabilities (P i
TR for i=St.I, St.II)

and QSC
α -values deduced from a comparison between the ex-

perimental LRA/B data and our calculations. The QGS
α values

are also mentioned to show that the difference (∆Qα) between
QSC

α and QGS
α stays rather constant for all Pu-isotopes. Note

that it is also the case for the ratio P II
TR/P

I
TR.

QGS
α QSC

α ∆ Qα P I
TR P II

TR P II
TR/P I

TR

(MeV) (MeV) (MeV)

238Pu 5.6 11.0 5.4 0.22 0.42 1.9
240Pu 5.3 10.5 5.2 0.16 0.34 2.1
242Pu 5.0 10.3 5.3 0.15 0.32 2.1
244Pu 4.7 10.0 5.3 0.16 0.32 2.0

4.2 Comparison with the experimental data

From a comparison between the experimental LRA emis-
sion probabilities and the theoretical LRA/B values ob-
tained from eq. (1), we can extract a very useful physi-
cal quantity: QSC

α . Nevertheless, in order to apply eq. (1),
we have to know the following quantities: Sα, W i, the
TXE distributions for each fission mode, 〈Di

cm〉 and Ei
c.

As mentioned in the introduction, Sα is determined from
α-decay (see appendix A). W i and the TXE distributions
are known for each fission mode of all Pu-isotopes from the

experimental work done by Dematté et al. [17]. The 〈Di
cm〉

values can be evaluated from the average total kinetic en-
ergy of the fragments in each fission mode. All these quan-
tities are reported in table 1. Finally, in the frame of our
sudden approximation, Ei

c is defined by the top of the
IAS barrier: Ei

c = V i
max. In fact, since the average scission

elongations of the two fission modes are not very far apart,
V I
max and V II

max are close: V I
max � V II

max � 16 MeV.
So, the LRA emission probability can be calculated for

several Qα-scission values using:

LRA/B = Sα

×
{
W IProbaI

(
TXE > V I

max

)
P I
TR

(〈DI
cm〉, QSC

α

)
+W IIProbaII

(
TXE > V II

max

)
P II
TR

(〈DII
cm〉, QSC

α

) }
. (11)

A comparison between the experimental and the theoret-
ical LRA emission probabilities is shown in fig. 7. The
best agreement is reached when QSC

α is between 10 and
11 MeV. The QSC

α values which exactly reproduce the ex-
perimental data are given in table 2 as well as the Qα-
Ground State values (QGS

α ). Note that within the uncer-
tainties, the differences ∆Qα between QSC

α and QGS
α are

approximatively the same for all Pu-isotopes, which gives
confidence to our model. Furthermore, these relative val-
ues are in good agreement with the values obtained by
Lestone et al. [18]. Nevertheless, the sudden approxima-
tion gives only an upper limit for the transfer probability
since the transfer depends on the finite velocity of the
change of the potential. This has consequences on the ex-
tracted QSC

α values, which have therefore to be considered
as upper limits.

Lastly, concerning the values of P I
TR and P II

TR (see ta-
ble 2), we can again notice that the ratio P II

TR/P
I
TR stays

rather constant for all nuclei.

5 Conclusions

The one-dimensional sudden approximation model pre-
sented in this article enables to describe the following as-
pects of LRA emission:
– The LRA angular distribution can be well explained
and the main characteristics of the equatorial and po-
lar contributions can be qualitatively reproduced. Nev-
ertheless, more realistic fragment shapes must be con-
sidered in order to reproduce quantitatively the LRA
angular distribution.

– The energy transfer probability is depending on the
elongation of the scissioning nucleus. This is in agree-
ment with the experimental evidence of the enhance-
ment of PTR in the more elongated Standard II fission
mode than in the (more compact) Standard I fission
mode.

– The LRA emission probability can be calculated and
compared with experimental data; from this compar-
ison an upper limit for the Qα-scission value can be
obtained.
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Fig. 8. Fit of the energy transfer probability as a function of
the Qα-scission value for six different elongations at scission.
Both the calculated values (solid squares) and the fit curves
(lines) are shown.

It is difficult to estimate the error introduced by the
one-dimensional approximation. Therefore, the extension
of this model to two dimensions should be a priority for
future studies of LRA emission using the sudden approx-
imation.

The authors thank Dr H. Weigmann for a careful reading of
the manuscript.
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Appendix A.

The spectroscopic factor Sα was calculated using the fol-
lowing formula:

Sα =
bλexp
λWKB

,

where b is the branching ratio for the ground state to
ground-state transition; λexp the experimental α-decay
constant and λWKB the α-decay constant calculated from
the WKB approximation. The parameters used for the
WKB approximation are the same as those described in
sect. 2. The experimental values for b and λexp were taken
from ref. [19]. The results of Sα obtained in this way are
given table 1 for several Pu-isotopes.
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Appendix B.

In order to deduce the two-dimensional plot of PTR as a
function of Dcm and QSC

α (see fig. 6), we have used the
following procedure:

– First, we have calculated PTR for six different Dcm

values: Dcm=17.0; 18.2; 19.3; 20.5; 21.6; and 22.7 fm
and all eigenvalues (note that these Dcm values cor-
respond to distances between the extremities of the
nuclear shape which are, respectively: 28; 30; 32; 34;
36 and 38 fm).

– Second, for each Dcm value, we have fitted PTR with
the following function:

PTR =
A− 1

1 + exp
(

QSC
α

−Q0

aQ

) + 1, (B.1)

where A, Q0 and aQ are three free parameters. The cal-
culated PTR and the associated fits are shown in fig. 8.

– Third, we have searched a relation between these three
parameters and Dcm; we found (see fig. 9):

A = −0.28 + 0.02Dcm,

Q0 = −40.16 + 6.35Dcm − 0.19 (Dcm)
2
,

aQ = 5.46× 10−9 (Dcm)
6.616

.

(B.2)

Note that these relations are valid from Dcm �16 fm up
to Dcm �23 fm. Combining eqs. (B.1) and (B.2) allows
the calculation of PTR for any Dcm and QSC

α value.
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